如何控制液压动力单元?

[field:writer/] admin 2024-05-12 0 0条评论

一、如何控制液压动力单元?

  控制液压动力单元:通过集成块的液压可以实现压力、流量、方向的调节后由外接管传递到油缸中或者是马达中,这样控制液压动力单元的转动方向、力量的大小、速度的快慢,推动液压机做机械功.液压站的结构形式主要是根据泵装置的结构不同、安装的位置和冷却的形式不同来区分.  液压动力单元(HPU)用作供油装置,它通过外部的管路系统与数个液压油缸相连以控制多组阀门动作。油箱、油泵和蓄能器组成独立的密闭的动力油源系统。

二、动力伞如何控制速度?

用牵引绳控制伞的角度。从而达到控制速度

三、完成型动力控制装置如何获取?

1. 联系制造商或供应商,了解他们的销售渠道和购买方式。

2. 在线购买,可以通过各大电商平台或制造商的官方网站购买。

3. 找到当地的代理商或经销商,购买完成型动力控制装置。

4. 参加相关展会或活动,了解最新的产品信息和购买方式。

5. 寻找相关的社群或论坛,向其他用户或爱好者咨询购买建议和经验。

四、动力阀控制原理?

电动阀门操作原理: 电动阀通常由电动执行机构和阀门组成。电动阀使用电能作为动力来通过电动执行机构来驱动阀门,实现阀门的开关动作。从而达到对管道介质的开关目的。

电磁阀是电动阀的一个种类;是利用电磁线圈产生的磁场来拉动阀芯,从而改变阀体的通断,线圈断电,阀芯就依靠弹簧的压力退回。 用途 电动阀:用于液体、气体和风系统管道介质流量的模拟量调节,是AO控制。在大型阀门和风系统的控制中也可以用电动阀做两位开关控制。 电动阀简单地说就是用电动执行器.控制阀门,从而实现阀门的开和关。其可分为上下两部分,上半部分为电动执行器,下半部分为阀门。电动阀门在安装前宜进行模拟动作和压力试验。

优点:对液体介质和大管径气体效果好,不受气候影响。不受空压气的压力影响。

缺点:成本高、在潮湿环境不好。

五、潜水泵的自动控制和手动控制电路?

1、主回路

L1、L2、L3为380伏的接线电源,QF为断路器。FU1,FU2为熔断器,KM为接触器的主触点,FR热继电器,M为水泵。QF闭合,当KM闭合时水泵运行,断开时水泵停止。

2、二次回路

主要有两部分构成,一是手动部分,二是自动部分。

(1)手动部分:将转换开关SA旋转至1~2档位时,按下启动按钮SB2。手动部分成回路,KM线圈得电触点KM闭合,从而形成自锁回路,水泵运行,当按下停止按钮SB1时,此控制回路断开,线圈KM失电,接触器断开 ,水泵停止运行。

(2)自动控制部分:将旋转按钮SA旋转至3~4档位,当水位升高时,浮球阀浮球升起,浮球触点由开点变为闭点,此时自动部分形成回路,KM线圈得电,接触器吸合水泵运行。当水位下降时,浮球阀由闭点变为开点,接触器线圈KM断电水泵停止运行。

六、动力阀是怎么控制的?

当发动机小负荷运转时,进气量较少,ECU断开真空电磁阀,真空罐中的真空进入真空控制阀,动力阀处于关闭位置,进气通道面积变小。

当发动机大负荷运转时,进气量较多,ECU接通真空电磁阀搭铁回路,真空罐中的真空不能进入真空控制阀,控制动力阀开启,进气通道面积变大。

七、潜水泵怎么控制电机转速?

常见的潜水泵的电机转数都是二级转数,如果需要控制电机的转数,就在电机供电线路中加装一个变频控制器,可以控制水泵电机的转数。

八、潜水泵如何接线潜水泵如何接线?

你好,潜水泵的接线方式根据不同品牌和型号会略有差异,但一般可以按照以下步骤进行:

1. 确定潜水泵的电源线和控制线。大多数潜水泵都有两根电线和一根控制线,电线一般为蓝色和棕色,控制线为黄绿色。

2. 将电线接到电源上。将潜水泵的电线插入电源插座上,蓝色线接到零线,棕色线接到火线上。

3. 连接控制线。将潜水泵的控制线连接到相应的控制器或开关上,可以根据需要进行调整。

4. 连接地线。将潜水泵的地线连接到接地线上,确保电气安全。

5. 测试潜水泵运转是否正常。开启电源,检查潜水泵是否正常运转,水是否正常排出。

需要注意的是,在接线过程中一定要断电操作,以免发生电击事故。同时,如果不确定操作方法或存在安全隐患,建议请专业人士进行操作。

九、潜水泵的型号?

Q指的是潜水泵(具体见下面四个) 。

QJ: 井用潜水泵。

QX: 单相干式下泵式潜水泵。

QS: 充水上泵式潜水泵。

QY: 充油上泵式潜水泵。

流量(M3/H):250

扬程(m):11。

4指额定功率4KW。

N指的是内装式。

额定电压380V,三相,50Hz。

题目中写了一个15KW,我也没太搞懂什么意思,等待高手分享讲解了。

十、动力域控制器是什么?

未来汽车动力域发展将呈现八大趋势,分别是融合极简、千伏闪充、全场景高效、AI使能安全可靠、分布式驱动、智能OTA、集中域控制、数字化开发。

近年来,为应对汽车智能化的发展,汽车电子电气架构从分布式走向集中式, 将几十个控制器所需要的软件和所需的算法集中在高性能 SoC 上,各种部件上的控制器只负责驱动。

什么是动力域?

博世将汽车电子电气架构的演进分为三大阶段:分布式架构、(跨)域集中式架构、 车辆集中电子电气架构,每个大阶段中细分为两个小阶段,从低阶到高阶依次为:模块化(每个功能由一个独立的 ECU 实现)、集成化(不同的功能集成到一个 ECU 来实现)、域内集中(域控制器分别控制不同的域)、跨域融合(跨域控制器同时控 制多个域)、车辆融合(一个车载中央计算器控制全车的域控制器)、车辆云计算(更 多的车辆附加功能由云计算实现)。

电子电气架构升级来源:盖世汽车

目前汽车厂商的电子电气架构升级都仍处于域集中式架构阶段,以蔚来 ET7为例,集中式电子电气架构分为辅助驾驶域、底盘域、动力域、座舱域和车身域(也有划分增加了信息娱乐域)。少数领先的车厂已经发展到了跨域融合阶段,比如大众的MEB 平台采用三大控制器来对全车进行控制与功能实现。

从长远来看,未来汽车架构的变化将导致产业主导权从供应商向掌握域控制器的主机厂转移(如特斯拉自研控制器)。汽车控制器在汽车整车及零部件中扮演了“大脑”的角色,也是汽车软件的物理载体。其中,单一功能控制器被称为电控单元(ECU),多功能域控制器被称为域控单元(DCU)。

不过,与自动驾驶域和座舱域、车身域的集中化趋势不同。信息娱乐域、辅助/自动驾驶域采用 DCU 已较为普遍,核心原因是两者对高性能定制硬件(性能性DCU)有刚性需求。但动力总成域、底盘域和车身域对算力要求较低,而灵活性和开放程度要求较高,需要通用计算和通讯资源及标准化软件平台。如果针对动力域推DCU则成本过高,推广较为困难。相比特斯拉这样的新势力,传统车企通常产品谱系广、范围大,开发一套架构不但要兼顾高低中配车型,还要考虑全球各地供应链、产线 的可重用性等一系列问题,因此更倾向于保留 ECU 硬件,通过 ECU 接口标准化将其抽象为标准化传感器或执行器(只负责信号采集或负载驱动,不再具有运算功能),有利于车型谱系间的部件重用,降低变形开发费用, 同时也照顾到现有供应商的利益。

根据与非产业研究院的定义。动力域即安全域,是一种智能化的动力总成管理单元,主要用于动力总成的优化与控制,在电动汽车中主要是指电驱和电控系统的集成化,同时兼具电气智能故障诊断、智能节电、总线通信等功能。以新能源汽车为例,动力域包含了电控系统、电池管理系统(BMS)、以及逆变器、车载充电(OBC)等等。可以说动力域包含了新能源汽车的三大核心部件:电池、电控和电机(又称为“大三电”)。其余还包括了减速机、高压控制盒PDU、DC/DC变压器等构成部分。

动力域核心总成部件详解

新能源汽车三大核心总成部件结构图来源:欣锐科技招股说明书

其中电机高速化趋势明显,带动减速器向两档减速方向发展。目前,特斯拉 Model 3电机转速已达到17900rpm,国内车企基本也都达到了16000rpm,下一步规划便是18000-20000rpm。然而高转速需要多档减速器技术进行配套。两档减速器从最初的混动系统中的应用走向了纯电系统的应用。相较于单档减速器,两档减速器一方面使驱动电机在更高效的区域运行,从而提升驱动系统效率。另一方面,采用两档减速器后,传动比可以做到更高,汽车动力性随之增加、减少百公里加速时间。此外,采用两个档位后,驱动电机可以更加小型化、低速化,从而降低电机及电控的成本。目前,采埃孚、GKN、麦格纳等企业均已推出两档减速器产品。

随着国内车企纷纷跟进800V高压平台架构,在2022年陆续实现量产交付。小鹏汽车采用来自汇川技术的800V SiC高压产品,小鹏G9将搭载XPower 3.0动力系统,提供两驱单电机与四驱双电机两种选择,其中单电机最大功率230kW(312马力),双电机最大功率分别为175kW(238马力)/230kW(312马力) ,电驱系统最高效率可达95%以上。

主机厂选择电驱动方案时会考虑五大因素——功率密度、集成化程度、高效率、安全性和智能化。不管是自研还是选择其他零部件厂商的产品,这几点都是重中之重。下一阶段,多合一集成电驱、800V电压平台、SiC/GaN功率器件的研发与应用、动力域等新技术将推动电驱动系统行业快速发展。随着“三合一”集成电驱动系统的发展成熟,下一步将实现功率电子层面的“多合一”,将OBC车载充电器+高电压DC/DC转换器+逆变器+PDU配电单元进行深度整合,Tier1供应商纷纷推出了全新的电驱动系统产品。

部分Tier1供应商电驱动系统产品对比来源:佐思汽研

2021年,比亚迪在e3.0平台上推出八合一电动力总成,将电机、变速器、电机控制器、PDU、DC-DC、OBC、VCU、BMS高度集成,系统占用空间得到进一步压缩,重量变得更轻。其整体性能较上一代功率密度提升20%,整机重量和体积分别降低15%、20%,系统综合效率达到89%。比亚迪基于整车定位,400V中压、800V高压同平台打造,独立升压装置+复用驱动系统功率器件组成升压充电拓扑,实现模块化式的升压架构。高压平台采用1200V/840A的SiC功率模块,SiC相对IGBT控制器体积缩小60%,开关损耗降低70%,电控系统最高效率可达99.7%。

2021年11月,上海电驱动的GaN三合一电驱动总成在安世半导体的展台展出,因其超高的效率,备受青睐。在相同的工况下,对比传统的硅基IGBT电机控制器,其效率提升非常明显。基于氮化镓的电机控制器最高效率可到99.34%,效率大于90%的面积占比为93.58%;基于硅基IGBT的电机控制器最高效率可到98.3%,效率大于90%的面积占比为83.94%。

华为“多合一”电驱动系统DriveONE:集成了BCU(电池控制单元)、PDU(动力驱动单元)、DC/DC(驱动电源)、MCU(微控制单元)、OBC(车载充电器)、电动机、减速器七大部件,实现了机械部件与功率部件的深度融合。同时华为利用其软件方面的优势,将智能化带入到电驱动系统中,实现端云协同与控制归一。这一多合一电驱动系统实现了体积减小20%,重量减轻15%的目标,降低了开发成本,实现了整车前后驱适配。

传统“三合一”电驱动技术升级,将向着“3+3+X平台”演进,即是将三合一的电驱动系统(电机、变速器、电机控制器)与三合一高压充配电系统(DC/DC、OBC、PDU)集成为“六合一”产品,或再进一步与BCU(电池控制单元)、VCU(整车控制器)等集成,形成“七合一”或“八合一”产品,实现机械部件和功率部件的深度融合。同时,电驱动与整车热管理系统进一步联动融合,形成高效能、一体化电驱动热管理系统,通过电机、电控、减速器、DC/DC、电源等冷却系统集成,统一热管理,实现热源集成,减少热交换与热损失,增加热泵吸热效率,以提升电动汽车续航里程。

动力域功能模块详解

动力域产业链构成表来源:与非产业研究院

在动力域相关的功能模块中,主要包括动力域控制器、整车控制系统VCU、电池管理系统BMS、VBU等。

其中动力域控制器是一种智能化的动力总成管理单元,借助 CAN/FLEXRAY 实现变速器管理、引擎管理、电池监控、交流发电机调节。其优势在于为多种动力系统单元(内燃机、电动机\发电机、电池、变速箱)计算和分配扭矩、通过预判驾驶策略实现 CO2 减排、通信网关等,主要用于动力总成的优化与控制,同时兼具电气智能故障诊断、智能节电、总线通信等功能。动力域控制器负责三电系统的控制,包括三合一系统、BMS 和整车控制器。以哪吒PDCS动力域控制器为例,将VCU(整车控制系统)和BMS(电池管理系统)的软硬件功能集成、算法集成,在硬件架构上应用英飞凌多核CPU/GPU芯片,提供了更大的代码存储空间和更强更安全的运算能力,具备丰富的输入输出通信端口,可支持多种形态的组合应用和OTA升级能力。软件架构上具备AUTOSAR架构+MBD建模应用,可以有效提高软件可靠性和可移植性。

BMS系统通常由电池控制器单元(Battery Control Unit,BCU)和电池管理单元(Battery Management Unit,BMU)组成。电池模组中的BMU主要任务包括:负责采样模组中的电芯的电压,执行电芯的电压平衡,采样和管理电芯的温度,通过CAN总线跟外部其余相关单元进行通讯等。而BCU的主要任务包括:测量电池包的总电压、总电流和绝缘状态等,管理充电和放电,评估电池荷电状态SOC/SOH/SOP值,此外它也是VCU与电池包之间的通讯中介桥梁。BMS系统以电池管理 IC 为基础构建, 芯片技术是 BMS 产业链核心。BMS的核心是BMS芯片,针对不同的行业采用集成或分立的方案。比如消费电子领域通常采用 SoC 方案,动力电池中因 AFE(高压工艺)、 MCU 采用不同工艺,采用分立芯片形式。

2022年2月,随着新能源汽车的持续热销,带动相关零部件出货量快速增长。国内新能源乘用车OBC产品装机量为24.57万套,同比增长160.2%。乘用车BMS产品装机量为24.61万套,同比增长160.7%。

2022年2月新能源汽车OBC装机量来源:NE时代

OBC产品方面,与1月相比弗迪动力、威迈斯继续保持前二位置,英搏尔凭借A00客户产品的优势,本月跻身前三名。前三装机量分别为5.83万套、4.63万套和3.08万套。此外,本月超过一万套装机量的企业还包括新美亚、富特科技、欣锐科技以及铁城科技。

2022年2月新能源汽车BMS装机量来源:NE时代

BMS产品方面,弗迪电池依旧占据榜首,并且优势明显。第二、第三分别为宁德时代和特斯拉,前三装机量分别为6.7万套、3.31万套和2.42万套。此外,力高技术和华霆动力装机量也超过一万套。本月,凭借入门级车型客户的优势,国创新能和锐能科技也进入前十,国创新能主要为奇瑞新能源提供配套,锐能科技则主要为长安和吉利入门级新能源车型提供配套。

整车控制器是纯电动汽车整车电子控制系统的关键设备。与传统内燃机汽车中的发动机管理系统(EMS)功能相似,纯电动汽车的整车控制器能够合理分配能量,最大限度地提高车载电池能量的利用效率。整车控制器的电控单元(VCU)是整车控制器系统的核心。在VCU市场,联合电子持续保持高的市场份额,2021年7月的装机量接近9万套。而纬湃科技随着大众MEB平台的ID4和ID6的上市上量,在2021年7月出货量超万套,排名前三。

动力域中的这些控制模块核心用到的是元器件比如主控芯片、系统基础芯片,以及 IGBT、 Mosfet等功率半导体。现阶段 新能源汽车正在由 400V 向 800V 高压演变,在此背景下,SiC功率器件开始逐渐成为主流。在BMS芯片领域,该市场仍然被欧美等模拟龙头企业垄断,如 ADI、 TI、 ST、英飞凌、 NXP、瑞萨、松下等。在车载功率半导体领域,近年来比亚迪、斯达、华润微、新洁能、安世半导体、扬杰科技、华微电子等开始逐渐追赶。

动力域未来八大技术趋势

汽车产业电动化当前主要的难题和挑战有六方面:一是整车开发周期长、成本高,二是充电效率低、充电时间大于40分钟;三是里程焦虑、冬季续航缩水;四是电池安全问题频发;五是动力域智能化发展缓慢;六是车企对于更胜一筹的差异化解决方案的需求。

围绕以上痛点,未来汽车动力域发展将呈现八大趋势,分别是融合极简、千伏闪充、全场景高效、AI使能安全可靠、分布式驱动、智能OTA、集中域控制、数字化开发。

  • 融合极简

从三合一走向N合一超融合动力域架构,硬件模块化,实现整车极简布置及开发。未来,N合一有两大发展趋势,一是上部驱动制动,包括热管理的融合;二是从底盘往上融合,未来底盘域和动力域将互相融合,称之为滑板底盘。

  • 千伏闪充

当前电动车充电便利性不够,充电要1小时,排队可能要4小时。预计未来,快充接近加油体验,5分钟的快充不再是神话,大功率充电需求推动动力域向“千伏” 演进。

  • 全场景高效

通过“比特管理瓦特”,三能互补,AI寻优,实现器件-系统-整车全场景全层级高效。未来需要面向整个域控制的协同、多物理场合的协同,电、机、热管理协同,包括电池本身,实现全场景的高效,满足用户在续航里程的需求。

  • AI使能安全可靠

云端大数据算法,结合AI能力,实现动力域更安全更可靠。电池很难通过传统的云和大数据的方式进行热失控预测,AI技术引入后,通过高维打低维,结合大数据、端侧检测精度采样更精密,实现热失控的预警。

未来在动力域、电驱动、充电系统、电子元器件部件方面,都能通过AI,通过三态(设计态、生产态、运行态)的迭代优化去进行数字孪生,对全生命周期的可靠性、安全性进行预测、防护,提升用户用车的安全。

  • 分布式驱动

从集中式走向分布式,全轮独驱,灵活高效,打造极致驾驶体验。

  • 智能OTA

AI、大数据、云,与消费者个性化和场景化的需求融合,持续提升动力域智能体验。

  • 集中域控制

从分立部件到分布式域控制,再到控制归一,最终实现整车的高度智能化。

  • 数字化开发

动力域开发从传统模式向数字化方向演进,开发周期减半,开发成本减半。

当前主流的测试方式是经验设计+多轮样机验证,其弊端是时间长,费用高,通常历时3-5年,开发费动辄千万级开发费。未来数字化的导入,基于集成、数字化平台开发,解决优化部分测试,实现1-2年集成迭代,加速电动车的开发进程,带来更新更高的体验。

查看完整报告,请戳:

产研:汽车动力域为何难以被集成化?-汽车电子-与非网